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An analytical study is conducted to examine the coupling between buoyancy and surface tension forces in a
shallow pool of a Boussinesq fluid. The liquid layer is bounded below by a rigid and poorly conducting plate,
and is open to the air at its upper deformable free surface. At the onset of convection, the coupling between
buoyancy and surface-tension-induced instabilities is represented by a single parameterm. A pattern selection
study predicts the existence of a critical value for the parameterm, mc , that separates subcritical hexagons
with upflow at their centers from subcritical hexagons with downflow at their centers. Several experimental
situations are identified in terms of the Prandtl, Galileo, and capillary numbers, and the dependence ofmc on
these parameters is analyzed. Further, expressions for the interface deflection that accompanies the onset of
Rayleigh-Bénard-Marangoni convection are derived. These expressions show explicitly the dependence of the
interface morphology on the coupling parameterm and on the Prandtl, Galileo, and capillary numbers. It is also
noted that, for a specific set of experimental parameters, spatial resonance will occur which leads to a situation
in which the interfacial deformations do not conform to the flow pattern.@S1063-651X~96!10906-5#

PACS number~s!: 47.20.Bp, 47.20.Dr, 47.54.1r, 47.27.Te

I. INTRODUCTION

Rayleigh-Bénard-Marangoni ~RBM! convection refers
here to the spatially periodic flows induced by the coupled
effects of buoyancy and surface tension forces in a shallow
pool of fluid heated from below, and whose upper surface is
free and deformable. This convection process is now widely
recognized for its practical significance due to the fact that it
is omnipresent in a large variety of industrial processes, no-
tably crystal growth experiments, film coating processes, and
low gravity fluid experiments.

The phenomenon of surface-tension-driven cellular con-
vection was brought to light by Pearson@1#, some six de-
cades after the experimental findings of Be´nard @2#. Pear-
son’s study was stimulated by the remarks of Jeffreys@3# and
the experimental work of Block@4#. These investigations
were later improved by Scriven and Sternling@5#, who in-
cluded the effects of interface deformation. Nield@6# inves-
tigated the dual effects of surface tension and buoyancy on
the linear stability of the conduction state for the case of a
nondeforming free surface. Most recent studies deal prima-
rily with the influence of the interfacial deflection on the
stability of the motionless state. These studies are based on
the linearized set of equations and boundary conditions~see
Benguria and Depassier@7#, and references therein!. A nu-
merical three-dimensional nonlinear analysis of RBM con-
vection has been performed by Kraska and Sani@8#. These
authors derive a set of seven equations for the marginal am-
plitudes that describe the evolution of the convective state
near linear threshold. These amplitudes appear in the repre-
sentation of the planform function which has been chosen to
include the patterns of sheets, rectangles, hexagons, and
other mixed states. A stability analysis is then undertaken to
isolate the stable pattern as a function of the main parameters
of the problem, namely the Prandtl, Marangoni, Rayleigh,
and capillary numbers. Further, they present results pertain-

ing to the shape of the free surface.
In this work, a weakly nonlinear study of RBM convec-

tion is conducted. Most aspects of our model are the same as
those formulated by Kraska and Sani@8#, but with the excep-
tion that a lower boundary of low thermal conductance is
assumed. The method of analysis is also different: The criti-
cal wavelength at the onset of convection becomes infinitely
long in the limit of a system that is nearly insulating. Using
long wavelength asymptotics, we model the three-
dimensional RBM problem by a set of three nonlinear
coupled evolution equations for the leading order perturba-
tions of the temperature, vertical component of vorticity, and
interfacial deflection. The type of hexagonal pattern that is
observed near threshold is determined by conducting a sta-
bility analysis directly from the derived equations. Our
method yields analytical expressions for the fields, the criti-
cal parameters, and the interface shape, from which we as-
sess the relative importance of the different physical param-
eters that govern RBM convection. Only two studies dealing
primarily with the question of interface deflection stand out:
a theoretical analysis by Perez-Garciaet al. @9# and an ex-
perimental study by Cerisieret al. @10#. Their main findings
may be summed up as follows: At the center of the hexago-
nal cell, upflow is associated with a bump in the buoyancy
case and a trough in the surface tension case. The analysis of
Perez-Garciaet al. @9#, being linear, does not take into ac-
count the direction of the flow and the experimental work of
Cerisieret al. @10#, being carried out using only a single fluid
is unable to identify the dependence upon the Prandtl num-
ber. These results are also in agreement with the predictions
of Kraska and Sani@8#. These authors have only mentioned,
without elaboration, some anomalous behavior of the inter-
face deflection for low Prandtl numbers. Our inquiry into the
forms which the free surface can assume under the influence
of the combined motion of buoyancy and thermocapillarity
shows that the interface deflection, besides being dependent
upon the relative strength of buoyancy and surface tension
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forces, is also a function of the type of hexagonal pattern
which is determined by a stability analysis in the parameter
space of the problem consisting of the Prandtl, capillary, and
Galileo numbers.

The content of the paper is outlined in the following: In
Sec. II the mathematical formulation of the problem is pre-
sented. In Sec. III the method of solution is introduced, and
closed form expressions for the temperature, velocity, and
critical parameters are found. The lengthy algebraic expres-
sions have been verified using the mathematical software
MACSYMA. The stability analysis of the planform of convec-
tion and the determination of the interface deflection are car-
ried in Sec. IV and some remarks and the conclusion are
presented in Sec. V.

II. FORMULATION OF THE PROBLEM

Consider a shallow liquid layer of heightd that is
bounded below by a rigid plate of thermal conductancekp
and thicknessH. A layer of air, of thicknessH, is allowed to
exist between the liquid and a top plate whose thermal con-
ductance is assumed to be high. The free air-liquid interface,
which separates the air and liquid layers, deforms only when
the liquid is in motion. An upward heat fluxF is imposed
through the whole system by a suitable control of the tem-
peratures at the outer sides of the platesT0 andT1 . Figure 1
shows a schematic diagram of the experimental setup.
Within the Boussinesq approximation, the governing equa-
tions for the conservation of momentum, heat, and mass are
described by

]u

]t
1u•“u52~1/r!“p1@12aT~T2T0!#g1n¹2u,

~2.1!

]T

]t
1u•“T5k¹2T, ~2.2!

“–u50. ~2.3!

The fluid has a thermal diffusivityk, a constant reference
densityr, a dynamic viscosityn, and a thermal expansivity
aT . The other symbols that appear in Eqs.~2.1!–~2.3! are
the velocityu, the temperatureT; the pressurep, the gravi-

tational vector fieldg52gk, k being a unit vector in the
upward direction; the gradient vector“; and a reference
temperatureT0 .

We complete the description of the system by supple-
menting Eqs.~2.1!–~2.3! by appropriate boundary condi-
tions. The no-slip condition is assumed to hold at the lower
rigid plate located atZ50.

u50. ~2.4!

At the planar and rigid interface between the liquid and the
lower plate, the continuity of temperature and heat flux yield

T5TP ,
]T

]Z
5b

]Tp
]Z

on Z50, ~2.5!

whereb represents the ratio of the thermal conductivity of
the lower plate to that of the liquid (b!1), andTp is the
temperature in the plate which satisfies the heat conduction
equation

]Tp
]t

5kp¹
2Tp . ~2.6!

At the air-liquid interface, located atZ5d1h(X,Y,t),
whereh(X,Y,t) represents the deviation from planarity, the
stress balance equation, written in tensor notation, takes the
form ~Levitch and Krylov@11#!

F ~p2pa!1sS 1

R1
1

1

R2
D Gni5mF ]v i

]xk
1

]uk
]xi

G2
]s

]xi
,

~2.7!

wherep andpa are the pressures at the liquid side and the air
side, respectively;s is the surface tension;R1 andR2 are
the principal radii of curvature of the interface andni ;
( i51, 2, 3! are the components of the outward unit vector
normal to the interfacen, whose norm is denoted byN,

n5~2hX ,2hY ,1!/N, N5~11hX
21hY

2 !1/2. ~2.8!

Equation~2.7! translates into the following for the normal
stress balance:

p2pa5
2m

N
@uX~hX!21~uY1vX!hXnY2~uZ1wX!hX

1vY~hY!22~vZ1wY!hY1wZ#

2
s

NAN
@hXX1hYY#, ~2.9!

whereu, v, andw are the components of the velocity vector
u; the subscriptsX andY correspond to differentiation with
respect toX and Y, respectively;m is the viscosity; and
¹H denotes the horizontal gradient. The tangential stresses
balance, from Eq.~2.7!, implies

FIG. 1. Sketch of a liquid layer of depthd underlying a layer of
air of depthH. The lower plate has a thicknessH, and is assumed
to have the same thermal conductance as that of air. The free air-
liquid surface is planar~dotted line! in the motionless state, and
deformable~continuous line! in the convective state.T1 andT0 are
the upper and lower temperatures, respectively.
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m

N
@22uXhX~11hY

2 !1~uY1vX!$2hY~11hY
2 !1hYhX

2%

1~uZ1wX!~11hY
22hX

2 !12vYhXhY
222hXhY~vZ

1wY!12wZhX#5@sX2hXhYsY1hXsZ# ~2.10a!

and

m

AN@2hX~vX1uY!22hYvY1~vZ1wY!~12hY
2 !

2~wX1uZ!hXhY12wZhY#5@sY1hYsZ#, ~2.10b!

and finally the free surface kinematic boundary condition,
which also connects the interface perturbations to the fluid
velocity, yields

w5unX1vhY1
]h

]t
. ~2.11!

The continuity of temperature and heat flux at the free sur-
face imply

T5Ta , n–¹~kT2kaTa!50 on Z5d1h, ~2.12!

whereTa is the temperature in the air layer, and wherek and
ka are the thermal conductivities of the liquid and air, respec-
tively.

The system possesses a basic state defined by a motion-
less fluid in which heat transfer is by conduction alone. The
temperature profile is linear and varies only in the vertical
direction,

TB~Z!5F~Z2d!1TR , ~2.13a!

TR5T12FH/b, F5
b~T12T0!

db12H
, ~2.13b!

pB~Z!5pa2gr0$~Z2d!1aT~F/2!~Z2d!2%. ~2.13c!

All quantities are nondimensionalized in the standard
way: length is scaled byd, time byd2/k, and temperature by
Fd. Upon subtraction of the basic state, the following sys-
tem of equations and corresponding boundary conditions is
obtained for the convective variables:

P21F]u]t 1u•¹uG52¹p1Ruk1¹2u, ~2.14!

]u

]t
1u•¹u5¹2u1w, ~2.15!

¹•u50, ~2.16!

whereu is the temperature fluctuation, andR andP, respec-
tively, are the Rayleigh and Prandtl numbers,

R5
aTgd

4F
n k

, P5
n

k
. ~2.17!

At the free surface, the convective perturbations for the nor-
mal and tangential stresses balance equations satisfy

p2GPh1~R/2!h21~2/N!@uX~hX!21hXhY~uY1vX!

2~uZ1wX!hX1vY~hY!22hY~vZ1wY!1wZ#

5N23/2@hXX1hYY#@1/C1M ~h2u!#, ~2.18!

~1/N!@22uXhX~11hY
2 !22hY~uY1vX!~11hY

22hX
2 !

1~uZ1wX!~11hY
22hX

2 !12vYhXhY
222hXhY~vZ

1wY!12wZhX#5M @2uX~11hY
2 !1hXhYuY1hX

2hXuZ#, ~2.19!

N21/2@2hX~vX1uY!22hYvY1~12h2!~vZ1wY!

2hXhY~wX1uZ!12wZhy#5M ~hY2uY2hYuZ!.

~2.20!

The conditions of continuity of the temperature and of the
heat flux at the free surface are combined to yield the fol-
lowing boundary condition relating the temperature and in-
terface convective perturbations:

n•¹u52b8~h2u!, ~2.21!

whereb8 is a heat transfer Biot number which depends upon
the thermal conductivities of air and of the top plate that
bounds it from above, on the thicknesses of the plate and air
layer and on the wave number at the onset of convection.
The reader is referred to Hadji, Safar, and Schell@12# for a
detailed calculation ofb8.

In deriving Eqs.~2.18!–~2.21!, we have assumed that the
surface tension varies linearly with temperature,

s5s01G~T2T0!, G52
]s

]T
. ~2.22!

The dimensionless parameters that appear in Eqs.~2.18!
–~2.20! are the Marangoni numberM , the Galileo number
G, and the capillary numberC, whose definitions are

M5
GFd2

rnk
, G5

gd3

n2
and C5

nkr

s0d
. ~2.23!

The Marangoni number expresses the competition be-
tween the destabilizing forces due to surface tension gradi-
ents and the stabilizing forces due to viscous drag and heat
dissipation. The Galileo number represents the competition
between the gravitational effects and viscous drag. Small Ga-
lileo numbers pertain to thin and viscous fluid layers or to
microgravity situations, while large Galileo numbers corre-
spond to situations involving thicker and less viscous fluids
under terrestrial conditions. The capillary number is a mea-
sure of the free surface deformability. A vanishing capillary
number, which can be achieved in the limit of large surface
tension coefficients0 , corresponds to a planar interface.

In Sec. III, the governing system, which now consists of
Eqs.~2.14!–~2.21!, is analyzed.
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III. ASYMPTOTIC ANALYSIS

A. Simplified system

The continuity equation~2.3! is removed from the formu-
lation by introducing the general representation for a solenoi-
dal vector field. This representation takes into account the
fact that, in this case, convection does not generate a mean
flow,

u5“3~“3fk!1“3ck. ~3.1!

The components of the velocity vector field are then related
to the scalar functionsf andc as follows:

~u,v,w!5~fXZ1cY ,fYZ2cX ,2fXX2fYY!. ~3.2!

The vertical component of the curl of the equation for mo-
mentum conservation Eq.~2.14! yields an equation for the
vertical component of the vorticity (2¹H

2c),

P21F ]

]t
~¹H

2c!2k•“3~u•“u!G5¹2~¹H
2c!, ~3.3a!

where

k•“3~u•“u!5~¹H
2f!~¹H

2cZ!2~¹H
2fZ!~¹H

2c!2~¹H
2fX!

3@fYZZ2cXZ#1~¹H
2fY!@fXZZ1cYZ#

2~¹H
2cX!@fXZ1cY#2~¹H

2cY!

3@fYZ2cX#. ~3.3b!

The vertical component of the double curl of Eq.~2.14!
yields an equation forf,

P21F ]

]t2
¹2~¹H

2f!1k•“3~“3u•“u!G5¹4~¹H
2f!

2R“H
2 u, ~3.4a!

where

k•“3~“3u•“u!52¹H
2 I1JXZ1KYZ , ~3.4b!

I52~¹H
2cX!@fXZ1cY#2~¹H

2cY!@fYZ2cX#1~¹H
2c!

3~¹H
2cZ!, ~3.4c!

J5@fXZ1cY#@fXZ1cY#X1@fYZ2cX#@fXZ1cY#Y

2~¹H
2c!@fXZ1cY#Z , ~3.4d!

K5@fXZ1cY#@fYZ2cX#X1@fYZ2cX#@fYZ2cX#

3@fYZ2cX#Y2~¹H
2c!@fYZ2cX#Z . ~3.4e!

The equation for the conservation of energy, Eq.~2.15!, re-
duces to

]u

]t
1“HDf•“Hu2“H

2fDu1uXcY2cXuY1¹H
2f5¹2u,

~3.5!

where the symbolD stands for]/]Z. Finally, an equation for
the pressure is derived by considering the vertical component
of Eq. ~2.14!,

Dp5Ru2¹2~¹H
2f!2P21F ]

]t
~2¹H

2f!

2~fXZ1cY!¹H
2 ~fX!2~fYZ2cX!¹H

2 ~fY!

1¹H
2 ~fZ!~¹H

2f!G . ~3.6!

The boundary conditions on the velocity translate into the
following for the newly defined variables:

f5Df5c50 on Z50, ~3.7!

and, at the free surface located atZ511h,

p2GPh1~R/2!h21~2/N!@~“Hh•“H!2~Df!

2“H~D2f2¹H
2f!•“Hh2¹H

2 ~Df!#

1~2/N!@cXY~hX
22hY

2 !1hYcXZ2hXcYZ

1hXhY~cYY2cXX!#

5N23/2¹H
2h@1/C1M ~h2u!#, ~3.8!

~1/N!@22fXXZhX~11hY
2 !22hY~11hY

22hX
2 !fXYZ

1~fXZZ2¹H
2fX!~11hY

22hX
2 !12hXhY

2fYYZ

22hXhY~fZZY2¹H
2fY!22hX¹H

2fZ#1~1/N!

3@22~11hY
2 !hXcXY22hY~11hY

22h2!~cYY2cXX!

1~11hY
22hX

2 !cYZ22hXhY
2cXY12hXhYcXZ#,

5M @2uX~11hY
2 !1hXhYuY2hXuZ#, ~3.9!

N21/2@22hXfXYZ22hYfYYZ1~12h2!~fYZZ2¹H
2fY!

2~fZZX2¹H
2fX!hXhY22hY¹H

2fZ2hXcYY2cXX

12hYcXY2~12hY
2 !cXZ2hXhYcYZ#

5M ~hY2uY2hYuZ! ~3.10!

]h

]t
1“Hh•“HfZ52¹H

2f1cXhY2hXcY . ~3.11!

B. Evolution equation

The fluid under consideration is sandwiched between a
top air layer and a lower plate, both of which are assumed
much poorer heat conductors than the fluid itself, i.e.,
b5b8!1. It is a well known fact that under these assump-
tions the onset of convection is stationary, and that the regu-
lar convective cells that appear at onset have very long wave-
lengths. Proctor@13# has shown that this situation is
amenable to nonlinear analysis via long wavelength asymp-
totics. In the following steps, we scale the horizontal vari-
ables and time, and use a well known reduction method to
solve for the various quantities. The final result will be an
evolution equation for the leading order temperature. The
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derivation begins with the introduction of a small positive
perturbation parametere!1 and the slow variables

~X,Y!5~x,y!/e2, z5Z and t5t/e4, ~3.12!

while the control parametersR andM , and the Biot number
b8 are scaled as

R5R01R2e
2, M5M01M2e

2, b85b̂e4, ~3.13!

whereR2 , M2 , andb̂ are all quantities of order unity. The
convective variables as well as the interface are expanded in
powers ofe2 since only even order derivatives with respect
to the horizontal variables appear in the equations,

@u,f,c,p#5@u0 ,f0 ,c0 ,p0#1e2@u2 ,f2 ,c2 ,p2#1•••,

h5e2z1•••. ~3.14!

In order to cover a wide range of experimental situations,
several scalings for the Galileo, capillary, and Prandtl num-
bers are considered, namelyG5O(e22) and G5O(1),
C5O(1) andC5O(e4), andP5O(e24), P5O(e22), and
P5O(1).

Before proceeding with the solution, one more simplifica-
tion is in order, namely the boundary conditions describing
the tangential stresses balance at the free surface@Eqs.~3.9!
and~3.10#. If Eq. ~3.9! is differentiated with respect toX and
Eq. ~3.10! with respect toY, and the resulting expressions
summed up, keeping in mind the appropriate scalings Eqs.
~3.12! and ~3.13!, the following simplified boundary condi-
tions atz51 will result (“h being the horizontal gradient in
the variablesx andy):

¹h
2~D2f0!52M0¹h

2u0 , ~3.15!

¹h
2~D2f2!52z¹h

2~D3f0!1M0¹h
2z

2M0@¹h
2u22M0z¹h

2~Du0!#1¹h
2z

2M0“hz•“h~Du0!2M2¹h
2u0 . ~3.16!

The horizontal and temporal scalings Eq.~3.12! and the
scalings for the dimensionless parameters Eq.~3.13! are sub-
stituted into the governing set of equations and boundary
conditions Eqs.~3.3!–~3.11!, and the variables are then ex-
panded following Eq.~3.14!. By equating similar powers of
e, a hierarchy of boundary-value problems is obtained. The
leading order problems for the perturbations of temperature
and velocity are

D2u050 subject toDu050 at z50 and 1
~3.17!

and

D4f05R0u0 , ~3.18a!

subject to

f0~0!5Df0~0!5f0~1!50,

¹h
2@D2f0~1!1M0u0#50. ~3.18b!

The first order contribution to the vertical component of vor-
ticity satisfies

D2~¹h
2c0!50 subject to¹h

2c0~0!5D~¹h
2c0!~1!50.

~3.19!

The boundary condition forc0 at the free surface is derived
as follows: differentiate Eq.~3.9! with respect toY and Eq.
~3.10! with respect toX, then subtract the latter from the
former expression to obtain

D~¹h
2c0!~1!50. ~3.20!

The leading order equation for the pressure is

Dp05R0u0 . ~3.21!

The boundary condition associated with equation~3.21!,
which is given by Eq.~3.8!, depends on the scalings adopted
for the capillary, Galileo, and Prandtl numbers. They are the
following ones. First: for intermediate Prandtl numbers, we
find it necessary to letP5O(1), andconsider three possible
scalings for the Galileo and Capillary numbers, namely~1!
C5O(e4) andG5O(e22), ~2! C5O(e4) andG5O(1),
and~3! C5O(1) andG5O(e22). Second: for large Prandtl
numbers, we let P5O(e22), and consider the case
G5O(1) andC5O(e4). Third: for very large Prandtl num-
bers, we letP5O(e24) and consider the caseC5O(e4) and
G5O(1). Theboundary condition for the pressure atz51
takes one of these forms. For small to moderately large
Prandtl numbers, we have~the hat denotes order one quanti-
ties!

case 1: p0~1!52ĜP̂z2~1/Ĉ!¹h
2z, ~3.22a!

case 2: p0~1!52~1/Ĉ!¹h
2z, ~3.22b!

case 3: p0~1!52ĜP̂z. ~3.22c!

For P5O(e22) and O(e24), p0(1) is described by Eqs.
~3.22a! and ~3.22c!, respectively. Other scalings, such as
G,O(1), require that we take the calculations at very high
order in the perturbation parameter. Another possibility,
which leads to@G,O(1)], arises when the fluid layer is a
thin film. This case can be investigated using lubrication
theory to derive an evolution equation for the film thickness
~See Davis@14#!. The approach used in the present paper
limits us to consider only the cases described by Eqs.
~3.22a!, ~3.22b!, and~3.22c!.

Straightforward solution of the problems defined by Eqs.
~3.17!–~3.22! yields

u05F~x,y,t!, c050, p05R0Fz1K, ~3.23!

whereK is an integration constant, and

f05F SR0

24
z42SM0

4
1
5R0

48 D z31SM0

4
1
R0

16D z2GF.
~3.24!

The ordere2 for the conservation of heat equation~3.5! and
corresponding boundary conditions Eqs.~2.5! and ~2.21! re-
duces to
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D2u25@P~z!21#¹h
2F2

dP

dz
u¹hFu2, ~3.25!

subject to

Du250 on z50 and 1, ~3.26!

where P(z) is the polynomial between brackets in Eq.
~3.24!.

The application of the solubility condition to the nonho-
mogeneous boundary value problem, Eqs.~3.25! and~3.26!,
leads to the following expression for the critical Rayleigh
and Marangoni numbersR0 andM0:

R0

320
1
M0

48
51. ~3.27!

Let m5M0/48, from whichR05320(12m); then the pa-
rameter m varies between the limitsm50 ~for purely
buoyancy-driven convection! andm51 ~for purely surface-
tension-driven flow!. In terms of the recently defined param-
eterm, Eq. ~3.24! takes the form

f05@ 40
3 ~12m!z41 1

3 ~64m2100!z31~2028m!z2#F.
~3.28!

Proceeding to the next power ine2, we find

u252 1
90 @40~m21!z61~150296m!z51~60m2150!z4

145z2#¹h
2F2 1

3 @8~12m!z51~25216m!z4

14~2m25!z3#u¹hFu21L~x,y!, ~3.29!

whereL is an arbitrary function ofx and y. The solutions
f2 andc2 are obtained in a similar fashion. These lengthy
expressions are not displayed in this paper.

The problem under consideration is a free boundary prob-
lem, since the shape of the air-liquid interface isa priori
unknown. A relation between the leading orders of the inter-
face deformation and the pressure is given by Eq.~3.23!, and
one of the equations~3.22a!, ~3.22b! or ~3.22c!. For small to
moderately large Prandtl numbers, we have the following
possibilities:

case 1: p05R0~z21!F1Ĝz1~1/Ĉ!¹h
2z,

~3.30a!

case 2: p05R0~z21!F1~1/Ĉ!¹h
2z, ~3.30b!

case 3: p05R0~z21!F1Ĝz. ~3.30c!

Equation ~3.30a! is obtained for the case of a moderately
large Prandtl number, and~3.30c! for the very large Prandtl
number case.

Furthermore, if theX component of Eq.~2.14! is differ-
entiated with respect toX, and theY component with respect
to Y, and the results added, a relation between pressure and
the velocity is obtained. At leading order, this expression
takes the form

¹h
2p05D3~¹h

2f0!. ~3.31!

The compatibility condition Eq.~3.31! is then combined
with one of the equations~3.30! to yield an expression for
the interface deformation. ForP5O(1), we find

case 1: ĜP̂z1
1

Ĉ
¹h
2z5~1202192m!F, ~3.32a!

case 2:
1

Ĉ
¹h
2z5~1202192m!F, ~3.32b!

case 3: ĜP̂z5~1202192m!F. ~3.32c!

The interface deflection is described by Eqs.~3.32a! and
~3.32c! for the cases of large and very large Prandtl numbers,
respectively.

It is finally established, by application of the solubility
condition forf4 in the ordere

4 of Eq. ~3.5!, that the sought
evolution equation for the~scaled! planform function
f (x,y,t) written in reduced canonical form is

] f

]t
52¹h

4f22¹h
2f2b f2“h•“hf u“hf u2

2
a2

Aa8a3
“h•“hf ~¹h

2f !2
a9

Aa8a3
¹h
2u¹hf u22

a6

Aa8a3
F1

2
a5

Aa8a3
F32

a7

Aa8a3
F21mS a3a8D

1/2

¹h
2z

2a1S a8a3D
1/2

“h•~z“hf !2a10z¹h
2f2a11“hz•“hf

2a12Aa8a3@“hf3^“hc2&#•k, ~3.33a!

where angle brackets denote the average over the depth of
the fluid layer, and wherêc2& satisfies the Poisson equation

¹h
2~^c2&!5 f y¹h

2~ f x!2 f x¹h
2~ f y!. ~3.33b!

The leading order interface deformationz satisfies one of the
equations ~3.32!. The other symbols that appear in Eq.
~3.33a! are defined as follows:

F15~ f xy!
21~ f yy!

21~ f xx!
22 f xxf yy , ~3.33c!

F25 f yf xxy2 f yf yyy1 f xf xxx2 f xf xyy , ~3.33d!

F35~¹h
2f !22“hf •“h~¹h

2f !, ~3.33e!

53 5987NONLINEAR ANALYSIS OF THE COUPLING BETWEEN . . .



a15~16m120!/3, a25~4m15!/90,

a35~128m2240m13800!/2835, a555~12m!/126P,

a65~16m2160m150!/315P,

a752~16m2185m125!/315P,

a852~241m2264m2870!/10 395,

a95~40m21303m135!/630, a105~522m!,

a115~4m15!/2,

a1252~1024m211300m16100!/945P. ~3.34!

Since bothF andz are scaled by the same factor, the inter-
face deflection is represented by equations~3.32!, with F
replaced byf . This derivation is valid for moderate Prandtl
numbers. For large Prandtl numbers, the vertical component
of the vorticity becomes trivial, and the resulting evolution
equation takes the form~3.33a! without the terms in front of
the coefficientsa5 , a6 , a7 , anda12. The limit of the very
small Prandtl number, which requires a different derivation
for the evolution equation, is beyond the scope of the analy-
sis.

In Sec. IV, the stability of the flow pattern in the form of
hexagons, and the corresponding interface deflection, are ex-
amined directly from the evolution equation~3.33!.

IV. ANALYSIS OF THE FLOW PATTERN
AND OF THE FREE SURFACE DEFLECTION

A. Stability of the hexagonal flow pattern

The regular convective patterns of rolls, squares, or hexa-
gons that are observed experimentally are only a subset of
the solution manifold of Eq.~3.33!, which consists of regular
and also polygonal solutions. A complete analysis of the pre-
ferred planform of convection can be carried out directly
from the evolution equation using techniques from equivari-
ant bifurcation theory~Knobloch @15#!. However, we shall
limit this investigation to the case of the hexagonal planform,
since it is the pattern that is commonly observed in the ex-
periments. The deviation from linear threshold, which is de-
termined byR2 andM2 in Eq. ~3.13!, is a free parameter in
the analysis. The calculations show that the deviation from
threshold is expressed by a relation betweenR2 andM2 that
is similar to Eq. ~3.27!, namelyY5R2 /3201M2/48. For
simplicity in the calculations, we chooseY so that the linear
part is as shown in Eq.~3.33a!.

A linear stability analysis of Eq.~3.33! reveals that the
trivial state is stable forb̂.1, and becomes unstable to a
cellular regime having a wavelength 2p when b̂,1. In this
section, we seek the nonlinear solutions in the vicinity of the
bifurcation pointb̂51 using a standard approach~see Ref.
@15#!. For this purpose, we define a positive perturbation
parameterg!1, and let

b̂512gb12g2b21•••, s5g2t ~4.1!

and

f5g f 11g2f 21g3f 31•••. ~4.2!

Expansions~4.1! and ~4.2! are substituted into the evolution
equation, and the resulting sequence of problems solved. At
leading order ing, the solution is the planform for a hexago-
nal pattern

f 15A~s!Fcos~y!12 cosSA32 xD cosS y2D G . ~4.3!

At the next order ing, the solubility condition yields an
ordinary differential equation for the amplitudeA(s). With-
out loss of generality, we have added a cubic term in order to
insure the saturation of the amplitude@16#,

dA
ds

5b1A1vA22A3. ~4.4!

We suppose that the interface shape conforms to the flow
pattern so thatz5Sf, whereS is a constant which depends
onm, P, G, andC. For P5O(1), v takes the form

v5@22a212a92a626a51a712Sa1a822Sa11~a8a3!
1/2

14Sa10~a8a3!
1/2#/@4~a8a3!

1/2#, ~4.5a!

while for P>O(e22), we have

v5@22a212a912Sa1a822Sa11~a8a3!
1/2

14Sa10~a8a3!
1/2#/@4~a8a3!

1/2#. ~4.5b!

Note that the parameterb1 measures the deviation from
the critical valueb51, and that the sign ofv will determine
the character of the bifurcation at threshold. The fixed points
of Eq. ~4.4! are given by

A50, A15~v/2!1A~v2/4!1b1,

A25~v/2!2A~v2!/41b1, ~4.6!

and are illustrated in the bifurcation diagram Fig. 2. The
steady states are plotted as functions of the parameterb1 .
The trivial solution becomes unstable through a transcritical
bifurcation atb150 which represents the linear threshold.
The bifurcated solutions consist of four branches:~1! the
positive part ofA1, ~2! the negative part ofA2, ~3! the
negative part ofA1, and ~4! the positive part ofA2. The
first two branches are subcritical, while the last two bifurcate
supercritically. It is clear that the sign of the parameterv is
the determining factor in the stability of these bifurcated so-
lutions. A direct stability analysis from the amplitude equa-
tion cannot isolate the stable branches. The question of sta-
bility can, however, be resolved if the results of Hadji, Safar,
and Schell@12# are used. Indeed, these authors have carried a
detailed weakly nonlinear stability analysis on this same
problem, with the added assumptions that the fluid has an
infinite Prandtl number and the free interface is nondeform-
able (v is positive in this case!. Their analysis reveals that,
near threshold, the stable pattern consist of subcritical hexa-
gons with upflow at their centers. To show that this flow
pattern is represented byA1, it suffices to determine the
direction in which the fluid flows at the center of the hexa-

5988 53LAYACHI HADJI



gons using an order of magnitude analysis. Consider the
leading order ine for the vertical component of the fluid
velocity. This is given by Eqs.~3.2! and ~3.28!,

u•k5w52¹H
2f052P~z!¹H

2 f , ~4.7!

which at leading order ing yields

w52P~z!¹H
2 f 15gP~z! f 1 . ~4.8!

The fluid velocity at the center of the cell is then
w5P(z)gA. Given that the polynomialP(z) has no sign
change in the interval 0<z<1, it follows that
sgn(w)5sgn(gA). Consequently, the branchA1 corre-
sponds to hexagons with upflow at their centers~upflow
hexagons! andA2 corresponds to hexagons with down flow
at their centers~downflow hexagons!. Forv,0, it suffices to
multiply both sides of Eq.~4.4! by (21) to deduce that the
branch corresponding to2A1 ~i.e., A2) is then the stable

solution. This solution represents subcritical hexagons with
downflow at their centers. The two supercritical branches,
the negative part ofA1 and the positive part ofA2, are
unstable.

The variation ofv with m andP is depicted in Fig. 3. It
is found that the sign ofv depends primarily on the param-
etersm and P and on the relation between the interface
deflectionz and the temperature perturbationf . The curves
shown in Fig. 3 are obtained by determining the rootsmc of
the functionv(m) as a function of the Prandtl number, and
for a selected set of values of the Galileo and capillary num-
bers. The numerical task of determining the roots ofv is
accomplished by using a bisection method. Three possible
scenarios are uncovered:~1! For small Prandtl numbers,v is
negative for 0<m<1; ~2! for large Prandtl numbers,v is
positive for 0<m<1; and~3! for intermediate Prandtl num-
bers,v has a single root,mc , whose numerical value de-
pends onP, G, andC. The plots ofmc that are depicted in

FIG. 2. Plot of the amplitudeA as a function of the bifurcation
parameterb1 . Of the four branches, two are subcritical, namely
A1 @h# andA2(d). The two unstable supercritical branches are
shown with the symbols (3) and (1).

FIG. 3. Plot ofmc as a function of the Prandtl numberP for ~a!
case ~1! (P!1), Ĝ51, Ĉ54.5 (^ ), Ĉ56.0 (h), and
Ĉ510 (d); ~b! case~1! ~largeP), Ĉ51, Ĝ51 ~continuous line!,
andĜ510 ~dotted line!; ~c! case~2!, with Ĝ51 andĈ51; and~d!
case~2!, with Ĉ51.3, Ĝ51 ~h!, and Ĝ510 (^ ). For all cases
considered, we have not detected a root to Eq.~4.5! for P<0.001
(v,0) or P.200 (v.0).

TABLE I. ~a! Stable flow patterns and interface deflection at the center of the hexagon for the case
described by Eq.~3.33a! with ĜĈP̂.1. ~b! Stable flow patterns and interface deflection at the center of the
hexagon for the case described by Eq.~3.33a! with ĜĈP̂,1.

~a!
0<m<0.625 0.625<m<mc mc,m<1

Pattern Upflow hexagons Upflow hexagons Downflow hexagons
Interface convex concave convex
deflection ~Elevation! ~Depression! ~Elevation!

~b!
0<m<0.625 0.625<m<mc mc,m<1

Pattern Downflow hexagons Downflow hexagons Upflow hexagons
Interface convex concave convex
deflection ~Elevation! ~Depression! ~Elevation!
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Fig. 3 divide the parameter space into two regions: in one
region,v.0, the flow pattern consists of subcritical upflow
hexagons, and in the other region,v,0, the preferred pat-
tern is that of subcritical downflow hexagons.

B. Analysis of the free surface deflection

We now turn to the discussion of the free surface mor-
phology. As pointed out above, several relations between the
leading orders of interface deflection and temperature pertur-
bation, namely Eqs.~3.32a!–~3.32c!, are derived. These re-
lations are obtained by considering various experimental
situations which depend on the relative magnitudes of the
Galileo, Prandtl, and capillary numbers. In the following, we
will show how the sign of the interface deflection is deter-
mined by considering the case represented by Eq.~3.32a!.
This equation admits a solution having the same horizontal
periodicities asf , so that¹h

2z52z. We thus obtain

z5
~1202192m!Ĉ

ĜĈP̂21
f , ~4.9!

provided thatĜĈPÞ1. At leading order ing, the planform
function satisfiesf5g f 1 , where f 1 is given by Eq.~4.3!.
This implies that the first order ing for z, evaluated at the
center of the hexagonal cell, is described by

z5
~1202192m!Ĉ

ĜĈP̂21
gA. ~4.10!

The sign of z is then determined by sign analysis of the
various factors that appear in Eq.~4.10!. The sign ofgA is
determined from the stability results. Here it is found that a
critical valuemc exists above whichv is positive, and below
which it is negative. It then follows that upflow hexagons
(A1) are stable form,mc and downflow hexagons~i.e.,
A2) are stable form.mc . For instance, for the case
ĜĈP̂.1, sgn(z)5sgn(gA) if m,120/19250.625, and

sgn(z)52sgn(gA) if m.0.625. The results of the analysis
of the sign ofz from Eq. ~4.10! are summarized in Table
I~a!. Note that the interface is convex for both buoyancy-
driven ~BD! flows (m near 0! and surface-tension-driven
~STD! flows (m near 1!. The interface is concave in a small
range of the coupling parameter, 0.625,m,mc . Since only
elementary modifications of the above arguments are applied
to the analysis of the sign ofz for the other cases, we omit
the details and display only a summary of the results in
Tables I~b!–IV. Note that the interface is elevated at the
center of the cell for all cases depicted in Tables I~a!–III for
either BD or STD flows. These predictions have not been
revealed before due to the fact that the theoretical study of
Perez-Garciaet al. @9# is linear, and thus does not include the
influence of the stable flow pattern on the interface deflec-
tion; and the experimental work of Cerisieret al. @10# has
been carried out using silicone oil as the working fluid. An
estimation of the physical parameters for a 3-mm layer of
100-CS silicone oil using data from Ref.@17# yields the fol-
lowing: P'913, C'0.007, and G'8.8. Note that
(C)1/4;(P)21/4. Accordingly, the scalingsC5O(e4),
G5O(1), andP5O(e24) are appropriate for the descrip-
tion of this experiment. Only for this particular case, are the
results of our analysis summarized in Table IV, in agreement
with the experimental findings of Cerisieret al. @10#.

V. REMARKS AND CONCLUSION

In order to understand the influence of the various param-
eters and of the interfacial deformations on the stability of
the motionless state, we will examine the stability of the
trivial solution directly from the unscaled evolution equation,
whose linearized part is

]F

]t
52a8¹h

4F2Y¹h
2F2bF1mS a3a8D

1/2

¹h
2z. ~5.1!

There are solutions

F~x,y,t!5exp~ṽt1 lk•r ! and z5SF, ~5.2!

with

TABLE II. Stable flow patterns and interface deflection at the center of the hexagon for the case described
by Eq. ~3.33b!.

0<m<0.625 0.625<m<mc mc,m<1

Pattern Downflow hexagons Downflow hexagons Upflow hexagons
Interface convex concave convex
deflection ~Elevation! ~Depression! ~Elevation!

TABLE III. Stable flow patterns and interface deflection at the
center of the hexagon for the case described by Eq.~3.33c!.

0<m<0.625 0.625<m<1

Pattern Upflow hexagons Downflow hexagons
Interface convex convex
deflection ~Elevation! ~Elevation!

TABLE IV. Stable flow patterns and interface deflection at the
center of the hexagon for the case of a very large Prandtl number.

0<m<0.625 0.625<m<1

Pattern Upflow hexagons Upflow hexagons
Interface convex concave
deflection ~Elevation! ~Depression!
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ṽ52a8uku41FY2SmS a3a8D
1/2G uku22b. ~5.3!

The coefficients in Eq.~5.3!, namelya8 , Y, andb, andm
are all positive. Thus instability (ṽ.0) sets in whenever the
term between brackets becomes positive. Without loss of
generality, the coefficientsY andb may be fixed arbitrarily,
and the sign ofṽ investigated as a function ofm. Note that
instability does not occur for any wave numberuku when the
term between brackets is negative. It is therefore clear that
experimental situations for whichS is positive have a stabi-
lizing influence, while those for whichS is negative have a
destabilizing influence. See Figs. 4~a! and 4~b!.

In deriving Eq.~4.10! for z, the term (ĜP̂Ĉ21) appears
in the denominator. If (ĜP̂Ĉ21) is close to zero, thenz can
possibly be large enough to be outside the limits within
which our asymptotic analysis is valid. Moreover, resonance

will occur if ĜP̂Ĉ51 and a solution to Eq.~3.32a! will then
be

z5A$cosy1cos@~A3x2y!/2#1cos@~A3x1y!/2#%

1~B/4!~A3x2y!sin@~A3x2y!/2#1~B/2!y siny

1~B/4!~A3x1y!sin@~A31y!/2#, ~5.4!

whereB5(1202192m)ĈA. It turns out that, in this case,
the morphology of the interface does not conform to the flow
pattern. A representative solution is shown in Fig. 5.

Another point worth remarking on is the fact that the in-
terfacial deflection vanishes form50.625, and can be made
extremely convex or deeply concave by varyingm accord-
ingly. Note thatm50.625 corresponds to a Marangoni num-
berM530 and Rayleigh numberR5120. Again, if we make
use of the data for silicone oil from Ref.@17#, we find that
m50.625 for a layer of depthd54.68 mm. The deviation
from planarity is also found to increase with the amplitude of
motionA.

In conclusion, we reiterate our main result, namely the
claim that in RBM convection there is upflow beneath de-
pressions for STD flows and downflow under depressions for
BD flows is not true in general. Our analysis showed that
both the type of hexagonal patterns that appear at the onset
of convection and the associated interfacial deformations de-
pend in a complex way on the physical and control param-
eters as well as on the interplay between surface tension and
buoyancy forces. The influence of the Prandtl number is par-
ticularly noted. Notice that from an experimental standpoint,

FIG. 4. ~a! Plot of the growth rateṽ as a function of the wave
number uku for m50.3 (1), m50.1 (X), m50.6 (h), and
m50.7 (s). The interval of unstable wave numbers increases in
length asm increases from 0 to about 0.3, and then decreases for
m.0.3. There are no unstable wave numbers form.0.63. ~b! A
surface plot ofṽ as a function ofm and the wave numberuku. Other
parameters pertain to case 2.

FIG. 5. Surface plots for the interface and the temperature fluc-
tuations for the resonant case (ĜĈP̂51) described by Eq.~3.33a!
with ~1202192m)Ĉ set arbitrarily to 1. Note that while the tem-
perature profile is periodic, the interface profile is quasiperiodic.
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the Prandtl number can be varied only by changing the fluid
@18#. Even though this analysis is valid only in the limit of an
experimental setup that is nearly insulating, the qualitative
nature of the results is not expected to be altered if the

present analysis is experimentally tested in a cell having a
plate of low, but finite, thermal conductance@19#. This
analysis will, hopefully stimulate the development of related
experiments.
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