PHYSICAL REVIEW E VOLUME 53, NUMBER 6 JUNE 1996

Nonlinear analysis of the coupling between interface deflection and hexagonal patterns
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An analytical study is conducted to examine the coupling between buoyancy and surface tension forces in a
shallow pool of a Boussinesq fluid. The liquid layer is bounded below by a rigid and poorly conducting plate,
and is open to the air at its upper deformable free surface. At the onset of convection, the coupling between
buoyancy and surface-tension-induced instabilities is represented by a single paramé&teattern selection
study predicts the existence of a critical value for the paranmatem., that separates subcritical hexagons
with upflow at their centers from subcritical hexagons with downflow at their centers. Several experimental
situations are identified in terms of the Prandtl, Galileo, and capillary numbers, and the dependepa of
these parameters is analyzed. Further, expressions for the interface deflection that accompanies the onset of
Rayleigh-B@ard-Marangoni convection are derived. These expressions show explicitly the dependence of the
interface morphology on the coupling parameteand on the Prandtl, Galileo, and capillary numbers. It is also
noted that, for a specific set of experimental parameters, spatial resonance will occur which leads to a situation
in which the interfacial deformations do not conform to the flow pattg$1.063-651X96)10906-3

PACS numbeps): 47.20.Bp, 47.20.Dr, 47.54r, 47.27.Te

I. INTRODUCTION ing to the shape of the free surface.
In this work, a weakly nonlinear study of RBM convec-

Rayleigh-B@ard-Marangoni (RBM) convection refers tion is conducted. Most aspects of our model are the same as
here to the spatially periodic flows induced by the coupledhose formulated by Kraska and S&8], but with the excep-
effects of buoyancy and surface tension forces in a shallowion that a lower boundary of low thermal conductance is
pool of fluid heated from below, and whose upper surface igssumed. The method of analysis is also different: The criti-
free and deformable. This convection process is now widely@! wavelength at the onset of convection becomes infinitely
recognized for its practical significance due to the fact that ifond in the limit of a system that is nearly insulating. Using
is omnipresent in a large variety of industrial processes, nol°"g wavelength -~ asymptotics, we model the three-
tably crystal growth experiments, film coating processes, angmensional RBM problem by a set of three nonlinear
low gravity fluid experiments. qoupled evolution equations .for the leading order .pgrturba-

The phenomenon of surface-tension-driven cellular con;[Ions of.the temperature, vertical component of vorticity, aqd
vection was brought to light by Pearsgh], some six de- interfacial deflection. The'type of h_exagonal pattern that is
cades after the experimental findings ofr@ed [2]. Pear- observed near threshold is determined by conducting a sta-

, . bility analysis directly from the derived equations. Our
son’s study was stimulated by the remarks of Jeffi@@nd 044 yields analytical expressions for the fields, the criti-
the experimental work of Block4]. These investigations

: > | ! cal parameters, and the interface shape, from which we as-
were later improved by Scriven and Stemlifel, who in-  gegs the relative importance of the different physical param-
cluded the effects of interface deformation. Nig] inves-  gters that govern RBM convection. Only two studies dealing
tigated the dual effects of surface tension and buoyancy oprimarily with the question of interface deflection stand out:
the linear stability of the conduction state for the case of & theoretical analysis by Perez-Gareigal. [9] and an ex-
nondeforming free surface. Most recent studies deal primaperimental study by Cerisiest al. [10]. Their main findings

rily with the influence of the interfacial deflection on the may be summed up as follows: At the center of the hexago-
stability of the motionless state. These studies are based aral cell, upflow is associated with a bump in the buoyancy
the linearized set of equations and boundary conditises  case and a trough in the surface tension case. The analysis of
Benguria and Depassi¢¥], and references therginA nu-  Perez-Garciat al. [9], being linear, does not take into ac-
merical three-dimensional nonlinear analysis of RBM con-count the direction of the flow and the experimental work of
vection has been performed by Kraska and $8hi These Cerisieret al.[10], being carried out using only a single fluid
authors derive a set of seven equations for the marginal anis unable to identify the dependence upon the Prandtl num-
plitudes that describe the evolution of the convective statder. These results are also in agreement with the predictions
near linear threshold. These amplitudes appear in the repref Kraska and Sar{i8]. These authors have only mentioned,
sentation of the planform function which has been chosen twithout elaboration, some anomalous behavior of the inter-
include the patterns of sheets, rectangles, hexagons, amace deflection for low Prandtl numbers. Our inquiry into the
other mixed states. A stability analysis is then undertaken téorms which the free surface can assume under the influence
isolate the stable pattern as a function of the main parameters the combined motion of buoyancy and thermocapillarity
of the problem, namely the Prandtl, Marangoni, Rayleighshows that the interface deflection, besides being dependent
and capillary numbers. Further, they present results pertainipon the relative strength of buoyancy and surface tension
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tational vector fieldg=—gk, k being a unit vector in the
upward direction; the gradient vect®; and a reference
temperatureTl .

We complete the description of the system by supple-
menting Eqgs.(2.1)—(2.3) by appropriate boundary condi-
tions. The no-slip condition is assumed to hold at the lower
rigid plate located aZ=0.

u=0. (2.9

FIG. 1. Sketch of a liquid layer of depthunderlying a layer of At the planar and rigid interface between the liquid and the

air of depthH. The lower plate has a thicknesk and is assumed |ower plate, the continuity of temperature and heat flux yield
to have the same thermal conductance as that of air. The free air-

liquid surface is planafdotted ling in the motionless state, and JT
deformable(continuous lingin the convective statdl; and T, are T=Tp, —=-= — on z=0, (2.5
the upper and lower temperatures, respectively. JZ JZ

aT

forces, is also a function of the type of hexagonal patterrwhere 8 represents the ratio of the thermal conductivity of
which is determined by a stability analysis in the parametethe lower plate to that of the liquidd<1), andT, is the
space of the problem consisting of the Prandtl, capillary, andemperature in the plate which satisfies the heat conduction

Galileo numbers. equation
The content of the paper is outlined in the following: In
Sec. Il the mathematical formulation of the problem is pre- oT
sented. In Sec. Il the method of solution is introduced, and [?—tp:vasz. (2.6

closed form expressions for the temperature, velocity, and
critical parameters are found. The lengthy algebraic expres-
sions have been verified using the mathematical software At the air-liquid interface, located a=d+ 7(X,Y,t),
MACSYMA. The stability analysis of the planform of convec- Where 7(X,Y,t) represents the deviation from planarity, the
tion and the determination of the interface deflection are carstress balance equation, written in tensor notation, takes the
ried in Sec. IV and some remarks and the conclusion aréorm (Levitch and Krylov[11])
presented in Sec. V.
1 0"l)i O”Uk Jo
—+ — —t— |-,
Rl RZ (9Xk (9Xi (9Xi

Consider a shallow liquid layer of heighd that is 2.7
bounded below by a rigid plate of thermal conductakge o .
and thicknes$l. A layer of air, of thicknessi, is allowedto ~ Wherep andp, are the pressures at the liquid side and the air
exist between the liquid and a top plate whose thermal con®ide, respectivelyy is the surface tensioriR, and R, are
ductance is assumed to be high. The free air-liquid interfacéh® Principal radii of curvature of the interface amd;
which separates the air and liquid layers, deforms only wheki =1, 2, 3 are the components of the outward unit vector
the liquid is in motion. An upward heat flug is imposed normal to the interface, whose norm is denoted by,
through the whole system by a suitable control of the tem-
peratures at the outer sides of the plaktgandT,. Figure 1 n=(—nx,—7ny,1)/IN, N=(1+ 77§<+ 77\2()1’2. (2.9
shows a schematic diagram of the experimental setup.
Within the Boussinesq approximation, the governing equagqyation(2.7) translates into the following for the normal
tions for the conservation of momentum, heat, and mass ar§yess palance:
described by

ni=pu

Il. FORMULATION OF THE PROBLEM {(p_ Pa) + o

au 2m
E—i—u-Vu:—(1/p)Vp+[1—aT(T—To)]g+VVZU, p_pa:W[Ux(77x)2+(UY+Ux)77an_(UZ+Wx)77x
@1 Foy(7y) 2= (v 7+ Wy) 7y + W]
'?T+ VT=«V?T (2.2 o
—+u-VT=« .
, — + , 2.9
ot N\/N[Wxx 7yyl (2.9

V.u=0. (2.3
whereu, v, andw are the components of the velocity vector
The fluid has a thermal diffusivitx, a constant reference u; the subscriptX andY correspond to differentiation with
densityp, a dynamic viscosity, and a thermal expansivity respect toX and Y, respectively;u is the viscosity; and
a1. The other symbols that appear in E¢8.1)—(2.3) are Vg denotes the horizontal gradient. The tangential stresses
the velocityu, the temperatur&; the pressure, the gravi-  balance, from EQq(2.7), implies
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o
N L 2ux7x(1+ 79) + (Uy+o){ = (14 7%) + oy 7%}

+ (Uz+Wy) (14 75— 7%) + 20y mx 75— 2 7x vy (v

+Wy) +2Wz ] =[ox— nxnvoy+ nxoz]  (2.108
and
s 2
\/_N[_ Nx(vx+Uy) = 2nyvy+ (vz+Wy)(1—7%)
—(Wxtuz) mxny+2wWzny]=[oy+ 7voz], (2.100

and finally the free surface kinematic boundary condition,
which also connects the interface perturbations to the fluid

velocity, yields

an
qunx+U 77y+ -

o (2.1
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p—GPy+(R/2) 7%+ (2IN)[ux(7x) 2+ nxmy(Uy+vy)
— (Uz+Wy) 7xF+ vv(7v) %= py(vZ+Wy) + W]

=N pxx+ pyyl[LIC+M(5—0)], (2.18

(N[ —2uxnx(1+ 9%) = 2y (uy +05) (1+ 75— %)
+ (Uz+Wy) (14 75— 75) + 20y mx 15— 2 px v (v
+Wy) + 2wz ¢ ] = M[ — Ox(1+ 7%) + mx 7y Oy + 7%

— nxbz], (2.19

N~Y — py(vx+Uy) = 29v0y+ (1= 7?) (vz+Wy)
= pxy(Wx+Uz) + 2wz =M ( 9y — Oy — 17y 67).
(2.20

The conditions of continuity of the temperature and of the

The continuity of temperature and heat flux at the free surheat flux at the free surface are combined to yield the fol-

face imply

lowing boundary condition relating the temperature and in-
terface convective perturbations:

T=T,, n-V(kT-k,T,)=0 on Z=d+ 5, (2.12
whereT, is the temperature in the air layer, and whkrand

k, are the thermal conductivities of the liquid and air, respec-
tively. wherep’ is a heat transfer Biot number which depends upon

The system possesses a basic state defined by a motidhe thermal conductivities of air and of the top plate that
less fluid in which heat transfer is by conduction alone. Thebounds it from above, on the thicknesses of the plate and air
temperature profile is linear and varies only in the verticallayer and on the wave number at the onset of convection.
direction, The reader is referred to Hadji, Safar, and Sch&f] for a
detailed calculation of3’.

n-Vé=—g'(n-0), (2.2

Tg(2)=HZ—-d)+Tg, (2.133 In deriving Egs.(2.18—(2.21), we have assumed that the
surface tension varies linearly with temperature,
Ta=Ty-rHIp, F=E 1ol (o ah
ROE ’ dg+2H '

Pe(Z)=Pa—9po(Z—d)+ ar(F2)(Z—d)?}. (2.139

All guantities are nondimensionalized in the standard The dimensionless parameters that appear in Eq%8
way: length is scaled by, time byd?/ «, and temperature by —(2.20 are the Marangoni numbevl, the Galileo number
Jd. Upon subtraction of the basic state, the following sys-G, and the capillary numbeZ, whose definitions are
tem of equations and corresponding boundary conditions is
obtained for the convective variables: gd®

I Fd? Kp
= =— and C=—;.

v
pVK ' v ood

(2.23
P—l

au+ \Y
o tu-vu

=—Vp+Rok+Vau, (2.14

The Marangoni number expresses the competition be-
tween the destabilizing forces due to surface tension gradi-
ents and the stabilizing forces due to viscous drag and heat
dissipation. The Galileo number represents the competition
between the gravitational effects and viscous drag. Small Ga-
lileo numbers pertain to thin and viscous fluid layers or to
microgravity situations, while large Galileo numbers corre-
spond to situations involving thicker and less viscous fluids

under terrestrial conditions. The capillary number is a mea-
argd* F v sure of the free surface deformability. A vanishing capillary
R:T’ P= P (2.17) number, which can be achieved in the limit of large surface
tension coefficientry, corresponds to a planar interface.
At the free surface, the convective perturbations for the nor- In Sec. Ill, the governing system, which now consists of
mal and tangential stresses balance equations satisfy Egs.(2.14—(2.2)), is analyzed.

260
E—I—U-VB:VZH-FW, (2.15

V-u=0, (2.16

where# is the temperature fluctuation, aRdandP, respec-
tively, are the Rayleigh and Prandtl numbers,
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1. ASYMPTOTIC ANALYSIS
A. Simplified system
The continuity equatiofi2.3) is removed from the formu-

lation by introducing the general representation for a solenoi-
dal vector field. This representation takes into account the

where the symbdD stands ford/dZ. Finally, an equation for

the pressure is derived by considering the vertical component
of Eq. (2.14),

Dp=Re—V2<Va¢>—P1[§(—Vﬁ¢>

fact that, in this case, convection does not generate a mean

flow,

u=VX(VXpk)+ VX yk. (3.1

— (xzt P ) VE(D5) — (dyz— ) VE(by)

+Vi(b2) (Vi) |. (3.6

The components of the velocity vector field are then related

to the scalar functiong and ¢ as follows:

(U,0,W) =(xzt by, dyz— Ix,— dxx— dvy). (3.2

The vertical component of the curl of the equation for mo-

mentum conservation E@2.14) yields an equation for the
vertical component of the vort|C|ty{V ),

Jd
o (VR —k- VX(u-Vu) | =VA(VEy), (3.39

where

k- VX (U-VU)= (Vi) (Vi) — (VEd) (Vi) = (Vi)
X[ byzz— ¥xzl+ (VES bxzzt v 7]
— (VAL bxzt vl = (Vi)
X[ dvz—x]. (3.3b
The vertical component of the double curl of E@®.14)

yields an equation fotp,

VZ(V $)+k-VX(VXU-Vu)|=V4V3e)

atz
—RVZ9, (3.49
where
k-VX(VXU-Vu)=—VaZ+ I+ Kyz, (3.4b
T=~ (Vi xzt dn] = (VEgn) [ byz— dx] + (Vi)
X(Viya), (349

T=[dxzt byl dxzt dvix+ [ dvz— xIl dxzt byly
— (VAW dxz+vlz, (3.40

K=[bxzt+ ¢yl dyz— bxx+ [ bvz— bxl by z— ¥x]
X[ byz— txly— (VEW [ byz— txlz - (3.4¢

The equation for the conservation of energy, Ej15, re-
duces to

26
E+VHD¢.VHa—vﬁ¢D 0+ Oxipy— Py Oy + V4=V 20,
(3.5

The boundary conditions on the velocity translate into the
following for the newly defined variables:

$=D¢p=¢y=0 on Z=0, 3.7
and, at the free surface locatedZat 1+ 7,
P—GP7+(R2)7°+(2N)[(Vy7n- Vi) (D b)
~Vu(D?¢—Vid)-Vyn—Vi(D )]
+(2IN)[x( m%— 79) + v ihxz— mxdyz

+ px v (Pyy— Pxx)
=N"32¥2 5[ 1IC+M (- 6)], (3.9

(UN)[ = 2¢xxzmx(1+ 7%) = 2y (1+ 75— 7X) vz
+(bxzz— Vadx) (1+ 75— 1)+ 2nx i dyyz
= 2nx7y(dzzv— Vidy) = 29xViibz]+ (LN)
X [=2(1+ 75) mxthxy—2nv(1+ 75— 7?) (hyy— thxx)
+(1+ 75— 02 Py 2= 2x Mo xy+ 2mx vz
=M[ — Ox(1+ 75) + 7x 7y Oy~ nx 2], 3.9

N~V =295 xvz—2nvbyvzt (1= 7°)(byzz— Viidy)
—(bzzx— Vafﬁx) XNy~ 2anﬁ¢z— DxPyy— Pxx
+2nvixy— (1= 15) Yhz— mx vy 2]

=M(77y—Oy—nvb7) (3.10

n
E"“VH 7-Viudz=—Vad+ dxny— nxpy. (3.11

B. Evolution equation

The fluid under consideration is sandwiched between a
top air layer and a lower plate, both of which are assumed
much poorer heat conductors than the fluid itself, i.e.,
B=pB'<1. Itis a well known fact that under these assump-
tions the onset of convection is stationary, and that the regu-
lar convective cells that appear at onset have very long wave-
lengths. Proctor[13] has shown that this situation is
amenable to nonlinear analysis via long wavelength asymp-
totics. In the following steps, we scale the horizontal vari-
ables and time, and use a well known reduction method to
solve for the various quantities. The final result will be an
evolution equation for the leading order temperature. The
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derivation begins with the introduction of a small positive The first order contribution to the vertical component of vor-
perturbation parameter<1 and the slow variables ticity satisfies

X,Y)=(x,y)/€?, z=Z andt=1le*, (3.12 D?(Vii)=0 subjecttoVZ¢o(0)=D(V3yp)(1)=0.

(3.19
while the control paramete® andM, and the Biot number
B’ are scaled as The boundary condition fog, at the free surface is derived

. as follows: differentiate Eq(3.9) with respect toY and Eq.
R=Ry+R,€e?, M=My+M,e?, B'=Be", (313 (3.10 with respect toX, then subtract the latter from the
R former expression to obtain
whereR,, M,, and B are all quantities of order unity. The )
convective variables as well as the interface are expanded in D(Vho)(1)=0. (3.20
powers ofe? since only even order derivatives with respect
to the horizontal variables appear in the equations,

[0=¢!l/jip]:[001¢01¢01p0]+62[021¢21¢21p2]+ N}
=€+ - -. (3.14 The boundary condition associated with equati@?1),
which is given by Eq(3.8), depends on the scalings adopted
In order to cover a wide range of experimental situationsfor the capillary, Galileo, and Prandtl numbers. They are the
several scalings for the Galileo, capillary, and Prandtl numfollowing ones. First: for intermediate Prandtl numbers, we
bers are considered, namey=0(e 2) and G=0(1), find it necessary to I_eI?=O(1), an_dcon5|der three possible
C=0(1) andC=0(e%), andP=0(e %), P=0(e ?), and scalings for the Galileo and Capillary numbers, nam@ly
P=0(1). C=0(€* andG=0(e ?), (2) C=0(€* and G=0(1),
Before proceeding with the solution, one more simplifica-and(3) C=0(1) andG=0(e ?). Second: for large Prandl
tion is in order, namely the boundary conditions describinglumbers, we letP=0(e ?), and consider the case
the tangential stresses balance at the free sufege.(3.9 ~ G=0(1) andC=0(e*). Third: for very large Prandtl num-
and(3.10]. If Eq. (3.9) is differentiated with respect 6 and ~ bers, we leP=0(e"“) and consider the cagz=O(€*) and
Eq. (3.10 with respect toY, and the resulting expressions G=0(1). Theboundary condition for the pressurezt 1
summed up, keeping in mind the appropriate sca”ngs Eqéakes one of these forms. For small to mOderately Iarge
(3.12 and(3.13, the following simplified boundary condi- Prandtl numbers, we havehe hat denotes order one quanti-
tions atz=1 will result (V,, being the horizontal gradient in ties)
the variablesx andy):

The leading order equation for the pressure is

Dpo:Roao. (321)

case 1: po(1)=—GP{—(1/C)V2:, (3.223

VA(D2ho)=—MqVibo, (3.19 -
case 2: po(1)=—(1/IC)V}¢, (3.22b
V24(D%¢p,)=—{VE(D3¢o) + MoVE .
h(D%¢2) = —{Vi(D o) + MoVid case 3. py(1)= —GPL. (3.220
—Mo[ Vi~ Mol V(D 6o) 1+ Vg i ) _ |
For P=0(e ?) and O(e %), po(1) is described by Egs.
—MoVhl V(D) —M,Viby. (3.16  (3.223 and (3.229, respectively. Other scalings, such as
] ] G<0O(1), require that we take the calculations at very high
The horizontal and temporal scalings K§.12) and the  order in the perturbation parameter. Another possibility,
scalings for the dimensionless parameters(Bdl.3 are sub-  \which leads tG<O(1)], arises when the fluid layer is a
stituted into the governing set of equations and boundaryhin film. This case can be investigated using lubrication
conditions Eqs(3.3—(3.11), and the variables are then ex- theory to derive an evolution equation for the film thickness
panded following Eq(3.14). By equating similar powers of (See Davis[14]). The approach used in the present paper
€, A hierarchy of boundary'value problemS is obtained. Thqimits us to Consider Oniy the cases described by Eqs
leading order problems for the perturbations of temperatures 223, (3.221, and(3.220.
and velocity are Straightforward solution of the problems defined by Egs.

3.17—(3.22 yields
D26,=0 subjecttoD@,=0 at z=0 and 1 B17-(3.22 y

(3.17 0o=F(X,¥,7), #o=0, po=RoFz+K, (3.23
and whereK is an integration constant, and
D*¢$o=Robo, (3.183 Ry , [Mo 5Rg Mo Ry
|| 2040 “T0) 3 (YO0 T0) >
| $o= (24Z ( a 48)2 +< 2 +16>ZiF'
subject to (3.24

$0(0)=D o(0)= ¢o(1) =0, The ordere? for the conservation of heat equatit®5) and

s corresponding boundary conditions E¢®.5 and(2.21) re-
VA[D“éo(1) +Mgb]=0. (3.189  duces to
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,_ dP The compatibility condition Eq(3.32) is then combined
D?6,=[P(2)—1]ViF— E|Vh':|2, (3.29  with one of the equation§3.30 to yield an expression for
the interface deformation. Fé&=0(1), we find

subject to

= = A A 1

D0,=0 onz=0 and 1, (3.26 case 1: GP(+ £ Vir=(120-192mF, (3324
where P(z) is the polynomial between brackets in Eq.
(3.29.

The application of the solubility condition to the nonho- 1
mogeneous boundary value problem, Es25 and(3.26, case 2: ~V27=(120-192m)F, (3.32h
leads to the following expression for the critical Rayleigh C
and Marangoni numbefR; andMy:

Ro Mo case 3: GPZ=(120-192m)F. (3.329

Let m=Mg/48, from whichRy=320(1—m); then the pa- The interface deflection is described by E¢3.32a and
rameter m varies between the limitsn=0 (for purely  (3.329 for the cases of large and very large Prandtl numbers,
buoyancy-driven convectigrandm=1 (for purely surface- respectively.

tension-driven flow. In terms of the recently defined param- It is finally established, by application of the solubility

eterm, Eq. (3.24) takes the form condition for ¢, in the ordere* of Eq. (3.5), that the sought
evolution equation for the(scaled planform function
do=[2(1—m)z*+ 1 (64m— 10023+ (20— 8m)Z?]F. f(x,y,7) written in reduced canonical form is
(3.28

Proceeding to the next power &f, we find
=—Vif—2V2F—Bf— V-V, f|V,f|?

0,= — &[40(m— 1)25+ (150— 96m)z°+ (60m— 150 2* IT
21v2F _ 1 )5 _ 4 a a a
+4572]V2F — 1[8(1—m)Z°+ (25— 16m)z - J_Lvh.v F(V26)— %Vﬁlvhflz— ¢6—F1
+4(2m=5)2] | VoF |2+ L(x,y), (3.29 Asd3 %3 %%
a a 1/2
wherelL is an arbitrary function ok andy. The solutions -2 ]—“2+m 3) Vﬁg
¢, and i, are obtained in a similar fashion. These lengthy Vasas Vasas
expressions are not displayed in this paper. 2. 112
The problem under consideration is a free boundary prob- —a, _8) Vi (EVof)—a10lVaf—a Vil Vif
lem, since the shape of the air-liquid interfaceairiori as
unknown. A relation between the leading orders of the inter- —a,\agagV FX (V)] -k (3.333

face deformation and the pressure is given by B®3, and
one of the equation§3.223, (3.22h or (3.229. For small to
moderately large Prandtl numbers, we have the followin

possibilities: Yvhere angle brackets denote the average over the depth of

the fluid layer, and wheréy,) satisfies the Poisson equation

case 1: po=Ro(z—1)F+G{+(1IC)VE¢,

(3.303 ) B
Vo)) =, Va0 — FVi(fy). (3.33b
case 2. py=Ry(z— 1)F+(1/C)V§ (3.30bh

The leading order interface deformati¢rsatisfies one of the
equations(3.32. The other symbols that appear in Eq.
(3.339 are defined as follows:

case 3: po=Ry(z—1)F+G{. (3.300

Equation(3.309 is obtained for the case of a moderately
large Prandtl number, an@.309 for the very large Prandtl
number case.

Furthermore, if theX component of Eq(2.14) is differ-
entiated with respect td, and theY component with respect
to Y, and the results added, a relation between pressure and
the velocity is obtained. At leading order, this expression 2= Ty Py Ty fyyyt fxfron fufuyys (3.33d
takes the form

j:lz(fxy)2+(fyy)2+(fxx)2_fxxfyy- (3.330

V2po=D3(Vigo). (3.3 Fa=(VEH)2=Vf-V(VE), (3.339
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a;=(16m+20)/3, a,=(4m+5)/90, f=yf +y2f+ 30+, 4.2
a;=(128m?—40m+3800/2835, as=5(1—m)/126P, Expansiong4.1) and(4.2) are substituted into the evolution
equation, and the resulting sequence of problems solved. At
ag=(16m?+60m+50)/315P, leading order iny, the solution is the planform for a hexago-
nal pattern
a;= — (16m2+85m+ 25)/315P, N
y
fi= +2 - = 4.3
ag= — (241m?— 64m— 870)/10 395, 1=A(s)| cogy) COS{ 2 X)“”(z) 4.3
ag=(40m?+303m+35)/630, ao=(5—2m), At the next order iny, the solubility condition yields an
ordinary differential equation for the amplitudgs). With-
a;=(4m+5)/2, out loss of generality, we have added a cubic term in order to
insure the saturation of the amplitufls],
a;,= —(1024n?+1300m+6100/945P.  (3.39 dA
: —— =B A+ w A% A3 .
Since bothF and ¢ are scaled by the same factor, the inter- ds PrAt 0 A=A “.9

face deflection is represented by equatig832), with F _
replaced byf. This derivation is valid for moderate Prandtl W€ suppose that the interface shape conforms to the flow
numbers. For large Prandtl numbers, the vertical componerattern so that'=Sf, whereS is a constant which depends
of the vorticity becomes trivial, and the resulting evolutiononm, P, G, andC. For P=0(1), w takes the form

equation takes the forr{8.339 without the terms in front of

=[— — _ _ 1/2
the coefficientsas, ag, a;, anda;,. The limit of the very w=[—2a,+2ay-a5—6as+as+ 25885~ 25a,(aga3)

small Prandtl number, which requires a different derivation 1 454, (aga;)"2]/[4(agas) 4, (4.53
for the evolution equation, is beyond the scope of the analy-
sis. while for P=0(e ?), we have
In Sec. IV, the stability of the flow pattern in the form of 7
hexagons, and the corresponding interface deflection, are ex- w=[—2a,+2a9+2Saag—2Sa(agas)
amined directly from the evolution equati¢8.33).
y quania.33 +4Sagagag) "2)[4(agaz) 2. (4.5b
IV. ANALYSIS OF THE FLOW PATTERN Note that the parametg®; measures the deviation from
AND OF THE FREE SURFACE DEFLECTION the critical valug8=1, and that the sign ab will determine

the character of the bifurcation at threshold. The fixed points
of Eq. (4.4) are given by
The regular convective patterns of rolls, squares, or hexa-

A. Stability of the hexagonal flow pattern

gons that are observed experimentally are only a subset of A=0, A"=(wl2)+(w?4)+ B4,
the solution manifold of Eq.3.33), which consists of regular
and also polygonal solutions. A complete analysis of the pre- A" =(02) = J(0?)I4+ B4, (4.6)

ferred planform of convection can be carried out directly
from the evolution equation using techniques from equivari-and are illustrated in the bifurcation diagram Fig. 2. The
ant bifurcation theoryKnobloch [15]). However, we shall steady states are plotted as functions of the paramgter
limit this investigation to the case of the hexagonal planform,The trivial solution becomes unstable through a transcritical
since it is the pattern that is commonly observed in the exbifurcation atg8;=0 which represents the linear threshold.
periments. The deviation from linear threshold, which is de-The bifurcated solutions consist of four branchéb: the
termined byR, andM, in Eq. (3.13), is a free parameter in positive part of 4™, (2) the negative part ofd~, (3) the
the analysis. The calculations show that the deviation frormegative part ofA™, and(4) the positive part ofA~. The
threshold is expressed by a relation betwBgrandM, that  first two branches are subcritical, while the last two bifurcate
is similar to Eq.(3.27), namely Y =R,/320+ M,/48. For  supercritically. It is clear that the sign of the parameteis
simplicity in the calculations, we choodé so that the linear the determining factor in the stability of these bifurcated so-
part is as shown in Eq3.333. lutions. A direct stability analysis from the amplitude equa-
A linear stability analysis of Eq(3.33 reveals that the tion cannot isolate the stable branches. The question of sta-
trivial state is stable fo3>1, and becomes unstable to a bility can, however, be resolved if the results of Hadji, Safar,
cellular regime having a wavelengthravhen ,Zg< 1. Inthis and Schel[12] are used. Indeed, these authors have carried a
section, we seek the nonlinear solutions in the vicinity of thedetailed weakly nonlinear stability analysis on this same
bifurcation point,é=1 using a standard approactee Ref. _pr(_)b_lem, with the added assumptions that th_e fluid has an
[15]). For this purpose, we define a positive perturbation'”f'”'te Prandtl number and the free interface is nondeform-

parametery<1, and let able (w is positive in this cage Their analysis reveals that,
. near threshold, the stable pattern consist of subcritical hexa-
B=1—vyB1— VBt ---, s=%°7 (4.1)  gons with upflow at their centers. To show that this flow

pattern is represented hyt*, it suffices to determine the
and direction in which the fluid flows at the center of the hexa-
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FIG. 2. Plot of the amplituded as a function of the bifurcation
parameterB,. Of the four branches, two are subcritical, namely
A* [O] and A (@). The two unstable supercritical branches are
shown with the symbolsX) and (+).

FIG. 3. Plot ofm, as a function of the Prandtl numbErfor (a)
case (1) (P<1), G=1, C=45 (®), C=6.0 (@), and
C=10 (®); (b) case(1) (largeP), C=1, G=1 (continuous ling
andG=10 (dotted Iine);A(c) case(2), with G=1andC=1; and(d)

. . . . case(2), with C=1.3, G=1 (O), andG=10 (®). For all cases
gons_ using an. order of magnitude analysis. Consider th’t?onsidered, we have not detected a root to @) for P<0.001
leading order ine for the vertical component of the fluid (@<0) or P>200 (@>0).

velocity. This is given by Eq9.3.2) and (3.28),

solution. This solution represents subcritical hexagons with

u-k=w=—V§¢o=—P(2)Vif, (4.7  downflow at their centers. The two supercritical branches,
the negative part ofA™ and the positive part ofA~, are
: . L unstable.
which at leading order iry yields The variation ofw with m andP is depicted in Fig. 3. It
is found that the sign o depends primarily on the param-
w=—P(2)V3f,=yP(2)f,. (4.8 etersm and P and on the relation between the interface

deflection and the temperature perturbatibn The curves

shown in Fig. 3 are obtained by determining the rountsof
The fluid velocity at the center of the cell is then the functionw(m) as a function of the Prandtl number, and
w=P(z) yA. Given that the polynomiaP(z) has no sign for a selected set of values of the Galileo and capillary num-
change in the interval €z=<1, it follows that bers. The numerical task of determining the rootswofs
sgn@)=sgn(y.A). Consequently, the branctl® corre- accomplished by using a bisection method. Three possible
sponds to hexagons with upflow at their centéupflow  scenarios are uncovered) For small Prandtl numbers, is
hexagonsand. A~ corresponds to hexagons with down flow negative for G=m=1; (2) for large Prandtl numbersy is
at their center¢downflow hexagons For 0 <0, it suffices to  positive for 0sm=<1; and(3) for intermediate Prandtl num-
multiply both sides of Eq(4.4) by (—1) to deduce that the bers,» has a single rootm;, whose numerical value de-
branch corresponding te- A" (i.e., A7) is then the stable pends onP, G, andC. The plots ofm, that are depicted in

TABLE I. (a) Stable flow patterns and interface deflection at the center of the hexagon for the case
described by Eq(3.333 with GCP>1. (b) Stable flow patterns and interface deflection at the center of the
hexagon for the case described by E333 with GCP<1.

@

0=m=0.625

0.625m=m,

m.<m=1

Pattern Upflow hexagons Upflow hexagons Downflow hexagons
Interface convex concave convex
deflection (Elevation (Depression (Elevation
(b)

0=m=0.625 0.625m=m, m.<m=<1
Pattern Downflow hexagons Downflow hexagons Upflow hexagons
Interface convex concave convex
deflection (Elevation (Depression (Elevation
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TABLE Il. Stable flow patterns and interface deflection at the center of the hexagon for the case described

by Eg.(3.33h.

0=m=0.625 0.625=m=m, m.<m<1
Pattern Downflow hexagons Downflow hexagons Upflow hexagons
Interface convex concave convex
deflection (Elevation (Depression (Elevation

Fig. 3 divide the parameter space into two regions: in onggn(;) = —sgn(y.A) if m>0.625. The results of the analysis
region, >0, the flow pattern consists of subcritical upflow of the sign of¢ from Eq. (4.10 are summarized in Table
hexagons, and in the other regian<0, the preferred pat- |(a). Note that the interface is convex for both buoyancy-
tern is that of subcritical downflow hexagons. driven (BD) flows (m near Q and surface-tension-driven
(STD) flows (m near 1. The interface is concave in a small
. . range of the coupling parameter, 0.62m<m,. Since only
B. Analysis of the free surface deflection elementary modifications of the above arguments are applied
We now turn to the discussion of the free surface morto the analysis of the sign af for the other cases, we omit
phology. As pointed out above, several relations between ththe details and display only a summary of the results in
leading orders of interface deflection and temperature perturkables (b)—IV. Note that the interface is elevated at the
bation, namely Eqs(3.328—(3.320, are derived. These re- center of the cell for all cases depicted in Tables-Il for
lations are obtained by considering various experimentagither BD or STD flows. These predictions have not been
situations which depend on the relative magnitudes of thgevealed before due to the fact that the theoretical study of
Galileo, Prandtl, and capillary numbers. In the following, we Perez-Garciat al.[9] is linear, and thus does not include the
will show how the sign of the interface deflection is deter-influence of the stable flow pattern on the interface deflec-
mined by considering the case represented by (Bg29.  tion; and the experimental work of Cerisiet al. [10] has
This equation admits a solution having the same horizontadpeen carried out using silicone oil as the working fluid. An

periodicities asf, so thatvﬁgz —{. We thus obtain estimation of the physical parameters for a 3-mm layer of
100-CS silicone oil using data from R¢f.7] yields the fol-
(120— 192m)é lowing: P=~913, C~0.007, and G~8.8. Note that
=——===—F (4.9  (C)Y4~(P)"¥.  Accordingly, the scalingsC=0(e%),

GCP-1 G=0(1), andP=0(e *) are appropriate for the descrip-

tion of this experiment. Only for this particular case, are the
) an , ) results of our analysis summarized in Table IV, in agreement
provided thatGCP# 1. At leading order iny, the planform it the experimental findings of Cerisiet al. [10].
function satisfiesf = yf;, wheref; is given by Eq.(4.3.
This implies that the first order ity for ¢, evaluated at the
center of the hexagonal cell, is described by V. REMARKS AND CONCLUSION

In order to understand the influence of the various param-
. eters and of the interfacial deformations on the stability of
_ (120-192m)C the motionless state, we will examine the stability of the
- GCP-1 YA (4.10 trivial solution directly from the unscaled evolution equation,
whose linearized part is

The sign of¢{ is then determined by sign analysis of the f__ de _NO2F
various factors that appear in E@.10. The sign ofyA is ar 3VpF — Y ViF—gF+m
determined from the stability results. Here it is found that a

critical valuem, exists above whicla is positive, and below There are solutions

which it is negative. It then follows that upflow hexagons

(A") are stable fom<m, and downflow hexagon§.e., F(x,y,7)=exp@7+1k-r) and {=SF, (5.2)
A”) are stable form>m.. For instance, for the case

GCP>1, sgn¢)=sgn(yA) if m<120/192=0.625, and \ith

ag 1/2 5
8

TABLE lll. Stable flow patterns and interface deflection at the  TABLE IV. Stable flow patterns and interface deflection at the

center of the hexagon for the case described by(E30. center of the hexagon for the case of a very large Prandtl number.
0=m=<0.625 0.625m=1 0=m=<0.625 0.625m=1

Pattern Upflow hexagons Downflow hexagons Pattern Upflow hexagons Upflow hexagons

Interface convex convex Interface convex concave

deflection (Elevation (Elevation deflection (Elevation (Depression
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tuations for the resonant casé@s: 1) described by Eq(3.33a
with (120-192m)C set arbitrarily to 1. Note that while the tem-
perature profile is periodic, the interface profile is quasiperiodic.

will occur if GPC=1 and a solution to Ed3.323 will then
be

(b)
{=A{coy +cog (V3x—y)/2]+cog (V3x+y)/2]}

FIG. 4. (a) Plot of the growth rat& as a function of the wave

number |k| for m=0.3 (+), m=0.1 (X), m=0.6 (d), and +(BI4)(\3x—y)sin (V3x—y)/2]+ (BI2)y siny
m=0.7 (O). The interval of unstable wave numbers increases in .
length asm increases from 0 to about 0.3, and then decreases for +(B/4)(\/§X+y)3|r{(\/§+ y)/2], (5.9

m>0.3. There are no unstable wave numbersnfor0.63. (b) A
surface plot ofs as a function ofn and the wave numbék|. Other

parameters pertain to case 2 where B=(120— 192m)f:A. It turns out that, in this case,

the morphology of the interface does not conform to the flow
pattern. A representative solution is shown in Fig. 5.
Another point worth remarking on is the fact that the in-
as| 2 terfacial deflection vanishes fon=0.625, and can be made
Y-S a_8 [K[*=B. (5.3 extremely convex or deeply concave by varyimgaccord-
ingly. Note thatm=0.625 corresponds to a Marangoni num-
o ) berM =30 and Rayleigh numbd=120. Again, if we make
The coefficients in Eq(5.3), namelyag, Y, andg, andm  yse of the data for silicone oil from RefL7], we find that
are all positive. Thus instabilityed>0) sets in whenever the y=0.625 for a layer of deptid=4.68 mm. The deviation

term between brackets becomes positive. Without 10ss ofrom planarity is also found to increase with the amplitude of
generality, the coefficient¥ and may be fixed arbitrarily, motion A.

and the sign ot investigated as a function ofi. Note that In conclusion, we reiterate our main result, namely the
instability does not occur for any wave numikf when the  claim that in RBM convection there is upflow beneath de-
term between brackets is negative. It is therefore clear thgjressions for STD flows and downflow under depressions for
experimental situations for whic8 is positive have a stabi- BD flows is not truein general. Our analysis showed that
Iizing influence, while those for whick is negative have a both the type of hexagona| patterns that appear at the onset
destabilizing influence. See Figsa#and 4b). of convection and the associated interfacial deformations de-
In deriving Eq.(4.10 for ¢, the term GPC—1) appears pend in a complex way on the physical and control param-
in the denominator. fGPC—1) is close to zero, thefican  eters as well as on the interplay between surface tension and
possibly be large enough to be outside the limits withinbuoyancy forces. The influence of the Prandtl number is par-
which our asymptotic analysis is valid. Moreover, resonancgicularly noted. Notice that from an experimental standpoint,

‘(‘;): _a8|k|4+
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the Prandtl number can be varied only by changing the fluigpresent analysis is experimentally tested in a cell having a
[18]. Even though this analysis is valid only in the limit of an plate of low, but finite, thermal conductang¢d9]. This
experimental setup that is nearly insulating, the qualitativeanalysis will, hopefully stimulate the development of related
nature of the results is not expected to be altered if thexperiments.
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